Multidimensional catalytic branching random walk with regularly varying tails

Ekaterina Vl Bulinskaya

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

3 Цитирования (Scopus)

Аннотация

Catalytic branching random walk (CBRW) describes reproduction of particles and their movement in space. The particles may give offspring in the presence of catalysts. Consider CBRW model where the particles perform a random walk over a multidimensional lattice, without procreation outside the catalysts. The latter take a finite number of fixed positions at the lattice. We study the particles spread in case of non-extinction of population initiated by a single particle. The rate of population spread depends essentially on the distribution tails of the random walk jumps. Consider the jumps with independent (or close to independent) components having regularly varying “heavy’’ tails. The main results show that, after a proper normalization of positions, in the time limit the particles concentrate on a random set, located at the coordinate axes. For a two-dimensional case, the limiting set forms a cross, and, for any higher dimension d, it is a collection of d segments containing the origin. The joint distribution of such segments lengths is found and the time-limit is understood in the sense of weak convergence. This radically differs from the known results for both the CBRW with “light” and semi-exponential distribution tails of the random walk jumps.

Язык оригиналаанглийский
Название основной публикацииICoMS 2019 - Proceedings of 2019 2nd International Conference on Mathematics and Statistics
ИздательAssociation for Computing Machinery
Страницы6-13
Число страниц8
ISBN (электронное издание)9781450371681
DOI
СостояниеОпубликовано - 8 июл 2019
Событие2nd International Conference on Mathematics and Statistics, ICoMS 2019 - Prague, Чехия
Продолжительность: 8 июл 201910 июл 2019

Серия публикаций

НазваниеACM International Conference Proceeding Series

Конференция

Конференция2nd International Conference on Mathematics and Statistics, ICoMS 2019
СтранаЧехия
ГородPrague
Период08.07.201910.07.2019

    Fingerprint

Цитировать

Bulinskaya, E. V. (2019). Multidimensional catalytic branching random walk with regularly varying tails. В ICoMS 2019 - Proceedings of 2019 2nd International Conference on Mathematics and Statistics (стр. 6-13). (ACM International Conference Proceeding Series). Association for Computing Machinery. https://doi.org/10.1145/3343485.3343493