Morphometry of the wheat spike by analyzing 2D images

Mikhail A. Genaev, Evgenii G. Komyshev, Nikolai V. Smirnov, Yuliya V. Kruchinina, Nikolay P. Goncharov, Dmitry A. Afonnikov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

7 Цитирования (Scopus)


Spike shape and morphometric characteristics are among the key characteristics of cultivated cereals associated with their productivity. Identification of the genes controlling these traits requires morphometric data at harvesting and analysis of numerous plants, which could be automatically done using technologies of digital image analysis. A method for wheat spike morphometry utilizing 2D image analysis is proposed. Digital images are acquired in two variants: a spike on a table (one projection) or fixed with a clip (four projections). The method identifies spike and awns in the image and estimates their quantitative characteristics (area in image, length, width, circularity, etc.). Section model, quadrilaterals, and radial model are proposed for describing spike shape. Parameters of these models are used to predict spike shape type (spelt, normal, or compact) by machine learning. The mean error in spike density prediction for the images in one projection is 4.61 (~18%) versus 3.33 (~13%) for the parameters obtained using four projections.

Язык оригиналаанглийский
Номер статьи390
Номер выпуска7
СостояниеОпубликовано - 17 июл. 2019


Подробные сведения о темах исследования «Morphometry of the wheat spike by analyzing 2D images». Вместе они формируют уникальный семантический отпечаток (fingerprint).