Monte Carlo tracking drift-diffusion trajectories algorithm for solving narrow escape problems

Karl K. Sabelfeld, Nikita Popov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

This study deals with a narrow escape problem, a well-know difficult problem of evaluating the probability for a diffusing particle to reach a small part of a boundary far away from the starting position of the particle. A direct simulation of the diffusion trajectories would take an enormous computer simulation time. Instead, we use a different approach which drastically improves the efficiency of the diffusion trajectory tracking algorithm by introducing an artificial drift velocity directed to the target position. The method can be efficiently applied to solve narrow escape problems for domains of long extension in one direction which is the case in many practical problems in biology and chemistry. The algorithm is meshless both in space and time, and is well applied to solve high-dimensional problems in complicated domains. We present in this paper a detailed numerical analysis of the method for the case of a rectangular parallelepiped. Both stationary and transient diffusion problems are handled.

Язык оригиналаанглийский
Страницы (с-по)177-191
Число страниц15
ЖурналMonte Carlo Methods and Applications
Том26
Номер выпуска3
DOI
СостояниеОпубликовано - 1 сент. 2020

Fingerprint

Подробные сведения о темах исследования «Monte Carlo tracking drift-diffusion trajectories algorithm for solving narrow escape problems». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать