Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence

N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko

Результат исследования: Научные публикации в периодических изданияхстатья

5 Цитирования (Scopus)

Аннотация

An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where the computed weak solutions are smooth. In this scheme, Rusanov’s explicit nonmonotone scheme of the third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET. The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third order in time are demonstrated in test computations.

Язык оригиналаанглийский
Страницы (с-по)506-510
Число страниц5
ЖурналDoklady Mathematics
Том98
Номер выпуска2
DOI
СостояниеОпубликовано - 1 сен 2018

Fingerprint Подробные сведения о темах исследования «Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать