Models of nonlinear kinematic hardening based on different versions of rate-independent maxwell fluid

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

Different models of finite strain plasticity with a nonlinear kinematic hardening are analyzed in a systematic way. All the models are based on a certain formulation of a rate-independent Maxwell fluid, which is used to render the evolution of backstresses. The properties of each material model are determined by the underlying formulation of the Maxwell fluid. The analyzed approaches include the multiplicative hyperelasto-plasticity, additive hypoelasto-plasticity and the use of generalized strain measures. The models are compared with respect to different classification criteria, such as the objectivity, thermodynamic consistency, pure volumetric-isochoric split, shear stress oscillation, exact integrability, and w-invariance.

Язык оригиналаанглийский
Название основной публикацииProceedings of the 14th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2017
ИздательInternational Center for Numerical Methods in Engineering
Страницы385-396
Число страниц12
Том2017-January
ISBN (электронное издание)9788494690969
СостояниеОпубликовано - 1 янв 2017
Событие14th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2017 - Barcelona, Испания
Продолжительность: 5 сен 20177 сен 2017

Конференция

Конференция14th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2017
СтранаИспания
ГородBarcelona
Период05.09.201707.09.2017

Fingerprint Подробные сведения о темах исследования «Models of nonlinear kinematic hardening based on different versions of rate-independent maxwell fluid». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Shutov, A. V. (2017). Models of nonlinear kinematic hardening based on different versions of rate-independent maxwell fluid. В Proceedings of the 14th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2017 (Том 2017-January, стр. 385-396). International Center for Numerical Methods in Engineering.