Аннотация
We study a generalization of the Pokrovski-Vinogradov model for flows of solutions and melts of an incompressible viscoelastic polymeric medium to nonisothermal flows in an infinite plane channel under the influence of magnetic field. For the linearized problem (when the basic solution is an analogue of the classical Poiseuille flow for a viscous fluid described by the Navier-Stokes equations) we find a formal asymptotic representation for the eigenvalues under the growth of their modulus. We obtain a necessary condition for the asymptotic stability of the Poiseuille-type shear flow.
Язык оригинала | английский |
---|---|
Название основной публикации | Continuum Mechanics, Applied Mathematics and Scientific Computing |
Подзаголовок основной публикации | Godunov's Legacy: A Liber Amicorum to Professor Godunov |
Издатель | Springer International Publishing AG |
Страницы | 45-51 |
Число страниц | 7 |
ISBN (электронное издание) | 9783030388706 |
ISBN (печатное издание) | 9783030388690 |
DOI | |
Состояние | Опубликовано - 3 апр. 2020 |
Предметные области OECD FOS+WOS
- 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ
- 1.01 МАТЕМАТИКА
- 2.05 ТЕХНОЛОГИЯ МАТЕРИАЛОВ