Mathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion

N. A. Kazarinov, E. M. Rudoy, V. Yu Slesarenko, V. V. Shcherbakov

Результат исследования: Научные публикации в периодических изданияхстатья

8 Цитирования (Scopus)

Аннотация

A boundary value problem describing the equilibrium of a two-dimensional linear elastic body with a thin rectilinear elastic inclusion and possible delamination is considered. The stress and strain state of the inclusion is described using the equations of the Euler–Bernoulli beam theory. Delamination means the existence of a crack between the inclusion and the elastic matrix. Nonlinear boundary conditions preventing crack face interpenetration are imposed on the crack faces. As a result, problem with an unknown contact domain is obtained. The problem is solved numerically by applying an iterative algorithm based on the domain decomposition method and an Uzawa-type algorithm for solving variational inequalities. Numerical results illustrating the efficiency of the proposed algorithm are presented.

Язык оригиналаанглийский
Страницы (с-по)761-774
Число страниц14
ЖурналComputational Mathematics and Mathematical Physics
Том58
Номер выпуска5
DOI
СостояниеОпубликовано - 1 мая 2018

Fingerprint Подробные сведения о темах исследования «Mathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать