Аннотация
An infinite sequence x1x2... of letters from some alphabet [0, 1, ..., b - 1], b ≥ 2, is called k-distributed (k ≥ 1) if any k-letter block of successive digits appears with the frequency b-k in the long run. The sequence is called normal (or ∞-distributed) if it is k-distributed for any k ≥ 1. We describe two classes of low-entropy processes that with probability 1 generate either k-distributed sequences or ∞-distributed sequences. Then, we show how those processes can be used for building random number generators whose outputs are either k-distributed or ∞-distributed. Thus, these generators have statistical properties that are mathematically proven.
Язык оригинала | английский |
---|---|
Номер статьи | 838 |
Число страниц | 10 |
Журнал | Mathematics |
Том | 7 |
Номер выпуска | 9 |
DOI | |
Состояние | Опубликовано - 1 сент. 2019 |