Local-moves on knots and products of knots II

Louis H. Kauffman, Eiji Ogasa

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We use the terms, knot product and local-move, as defined in the text of this paper. Let n be an integer 3. Let n be the set of simple spherical n-knots in Sn+2. Let m be an integer 4. We prove that the map j: 2m →2m+4 is bijective, where j(K) = KS - Hopf, and Hopf denotes the Hopf link. Let J and K be 1-links in S3. Suppose that J is obtained from K by a single pass-move, which is a local-move on 1-links. Let k be a positive integer. Let P S - QS - k denote the knot product P S - Q S - ⋯ S - Qk. We prove the following: The (4k + 1)-dimensional submanifold JS - HopfS - k S S4k+3 is obtained from KS - HopfS - k by a single (2k+1, 2k+1)-pass-move, which is a local-move on (4k + 1)-submanifolds contained in S4k+3. See the body of this paper for the definitions of all local-moves in this abstract. We prove the following: Let a,b,a',b', and k be positive integers. If the (a,b) torus link is pass-move-equivalent to the (a',b') torus link, then the Brieskorn manifolds, ς(a,b, 2, 22k) and ς(a',b', 2, 2 2k), are diffeomorphic as abstract manifolds. Let J and K be (not necessarily connected or spherical) 2-dimensional closed oriented submanifolds in S4. Suppose that J is obtained from K by a single ribbon-move, which is a local-move on 2-dimensional submanifolds contained in S4. Let k be an integer ≥ 2. We prove the following: The (4k + 2)-submanifold JS - HopfS - k S S4k+4 is obtained from KS - HopfS - k by a single (2k + 1, 2k + 2)-pass-move, which is a local-move on (4k + 2)-dimensional submanifolds contained in S4k+4.

Язык оригиналаанглийский
Номер статьи2140006
ЖурналJournal of Knot Theory and its Ramifications
Том30
Номер выпуска10
DOI
СостояниеОпубликовано - 1 сент. 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Local-moves on knots and products of knots II». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать