Local Existence of Contact Discontinuities in Relativistic Magnetohydrodynamics

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

We study the free boundary problem for a contact discontinuity for the system of relativistic magnetohydrodynamics. A surface of contact discontinuity is a characteristic of this system with no flow across the discontinuity for which the pressure, the velocity and the magnetic field are continuous whereas the density, the entropy and the temperature may have a jump. For the two-dimensional case, we prove the local-in-time existence in Sobolev spaces of a unique solution of the free boundary problem provided that the Rayleigh-Taylor sign condition on the jump of the normal derivative of the pressure is satisfied at each point of the initial discontinuity.

Язык оригиналаанглийский
Страницы (с-по)55-76
Число страниц22
ЖурналSiberian Advances in Mathematics
Том30
Номер выпуска1
DOI
СостояниеОпубликовано - 17 мар 2020

Fingerprint Подробные сведения о темах исследования «Local Existence of Contact Discontinuities in Relativistic Magnetohydrodynamics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать