Аннотация
The role of metal ions in the mechanism of light-stimulated redox activity of potential anticancer agent 2-phenyl-4-(butylamino)naphtha[2,3-h]quinoline-7,12-dione (Qc) has been studied by CIDNP (chemically induced dynamic nuclear polarization) and EPR methods. The photo-induced oxidation of NADH and its synthetic analog-substituted dihydropyridine (DHP)-by quinone Qc was used as a model. The Qc capability of producing chelating complexes with divalent metal ions of Fe, Zn and Ca was studied quantitatively by optical absorption spectroscopy. A significant decrease of electrochemical reduction potential of Qc (ΔE=0.4-0.6 eV for ACN and ACN/PBS solutions) in chelating complexes and in protonated form of Qc was observed. A pronounced increase in efficiency of DHP oxidation in chelating complexes with Zn2+ and Ca2+ ions compared with free Qc was demonstrated. The yields of free radicals, including reactive oxygen species (ROS) and reaction products, were a few times higher than those in the absence of metal ions. Application of such chelating compounds to enhance ROS generation looks very promising for anti-cancer therapy, including the photodynamic therapy.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 369-389 |
Число страниц | 21 |
Журнал | Zeitschrift fur Physikalische Chemie |
Том | 231 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 1 фев 2017 |