Least squares methods in Krylov subspaces

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)

Аннотация

The paper considers iterative algorithms for solving large systems of linear algebraic equations with sparse nonsymmetric matrices based on solving least squares problems in Krylov subspaces and generalizing the alternating Anderson–Jacobi method. The approaches suggested are compared with the classical Krylov methods, represented by the method of semiconjugate residuals. The efficiency of parallel implementation and speedup are estimated and illustrated with numerical results obtained for a series of linear systems resulting from discretization of convection-diffusion boundary-value problems.

Язык оригиналаанглийский
Страницы (с-по)900-910
Число страниц11
ЖурналJournal of Mathematical Sciences (United States)
Том224
Номер выпуска6
DOI
СостояниеОпубликовано - 1 янв 2017

Fingerprint

Подробные сведения о темах исследования «Least squares methods in Krylov subspaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать