Knot polynomials of open and closed curves: Knot polynomials of open curves

Eleni Panagiotou, Louis H. Kauffman

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


In this manuscript, we introduce a method to measure entanglement of curves in 3-space that extends the notion of knot and link polynomials to open curves. We define the bracket polynomial of curves in 3-space and show that it has real coefficients and is a continuous function of the curve coordinates. This is used to define the Jones polynomial in a way that it is applicable to both open and closed curves in 3-space. For open curves, the Jones polynomial has real coefficients and it is a continuous function of the curve coordinates and as the endpoints of the curve tend to coincide, the Jones polynomial of the open curve tends to that of the resulting knot. For closed curves, it is a topological invariant, as the classical Jones polynomial. We show how these measures attain a simpler expression for polygonal curves and provide a finite form for their computation in the case of polygonal curves of 3 and 4 edges.

Язык оригиналаанглийский
Номер статьи20200124
Число страниц20
ЖурналProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Номер выпуска2240
СостояниеОпубликовано - 1 авг. 2020


Подробные сведения о темах исследования «Knot polynomials of open and closed curves: Knot polynomials of open curves». Вместе они формируют уникальный семантический отпечаток (fingerprint).