Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint

Tatiana V. Sazhenkova, Sergey A. Sazhenkov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We consider the homogeneous Dirichlet problem for the nonlinear diffusion-absorption equation with a one-sided constraint imposed on diffusion flux values. The family of approximate solutions constructed by means of Alexander Kaplan's integral penalty operator is studied. It is shown that this family converges weakly in the first-order Sobolev space to the solution of the original problem, as the small regularization parameter tends to zero. Thereafter, a property of uniform approximation of solutions is established in Hölder's spaces via systematic study of structure of the penalty operator.

Язык оригиналаанглийский
Страницы (с-по)236-248
Число страниц13
ЖурналСибирские электронные математические известия
Том16
DOI
СостояниеОпубликовано - 1 янв 2019

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint Подробные сведения о темах исследования «Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать