Iterative processes in the Krylov–sonneveld subspaces

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


The paper presents a generalized block version of the Induced Dimension Reduction (IDR) methods in comparison with the Multi–Preconditioned Semi-Conjugate Direction (MPSCD) algorithms in Krylov subspaces with deflation and low-rank matrix approximation. General and individual orthogonality and variational properties of these two methodologies are analyzed. It is demonstrated, in particular, that for any sequence of Krylov subspaces with increasing dimensions there exists a sequence of the corresponding shrinking subspaces with decreasing dimensions. The main conclusion is that the IDR procedures, proposed by P. Sonneveld and other authors, are not an alternative to but a further development of the general principles of iterative processes in Krylov subspaces. Bibliography: 29 titles.

Язык оригиналаанглийский
Страницы (с-по)890-899
Число страниц10
ЖурналJournal of Mathematical Sciences (United States)
Номер выпуска6
СостояниеОпубликовано - авг. 2017


Подробные сведения о темах исследования «Iterative processes in the Krylov–sonneveld subspaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).