Inverse problem of recovering the initial condition for a nonlinear equation of the reaction–diffusion–advection type by data given on the position of a reaction front with a time delay

Dmitry Lukyanenko, Tatyana Yeleskina, Igor Prigorniy, Temur Isaev, Andrey Borzunov, Maxim Shishlenin

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

4 Цитирования (Scopus)

Аннотация

In this paper, approaches to the numerical recovering of the initial condition in the inverse problem for a nonlinear singularly perturbed reaction–diffusion–advection equation are considered. The feature of the formulation of the inverse problem is the use of additional information about the value of the solution of the equation at the known position of a reaction front, measured experi-mentally with a delay relative to the initial moment of time. In this case, for the numerical solution of the inverse problem, the gradient method of minimizing the cost functional is applied. In the case when only the position of the reaction front is known, the method of deep machine learning is applied. Numerical experiments demonstrated the possibility of solving such kinds of considered inverse problems.

Язык оригиналаанглийский
Номер статьи342
Страницы (с-по)1-12
Число страниц12
ЖурналMathematics
Том9
Номер выпуска4
DOI
СостояниеОпубликовано - 2 февр. 2021

Fingerprint

Подробные сведения о темах исследования «Inverse problem of recovering the initial condition for a nonlinear equation of the reaction–diffusion–advection type by data given on the position of a reaction front with a time delay». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать