Inverse cascade anomalies in fourth-order Leith models

Simon Thalabard, Sergey Medvedev, Vladimir Grebenev, Sergey Nazarenko

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We analyze a family of fourth-order non-linear diffusion models corresponding to local approximations of four-wave kinetic equations of weak wave turbulence. We focus on a class of parameters for which a dual cascade behavior is expected with an infrared finite-time singularity associated to inverse transfer of waveaction. This case is relevant for wave turbulence arising in the nonlinear Schrödinger model and for the gravitational waves in the Einstein's vacuum field model. We show that inverse transfer is not described by a scaling of the constant-flux solution but has an anomalous scaling. We compute the anomalous exponents and analyze their origin using the theory of dynamical systems.

Язык оригиналаанглийский
Номер статьи015702
ЖурналJournal of Physics A: Mathematical and Theoretical
Том55
Номер выпуска1
DOI
СостояниеОпубликовано - 7 янв. 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА
  • 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ

Fingerprint

Подробные сведения о темах исследования «Inverse cascade anomalies in fourth-order Leith models». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать