We propose a new method for finding discrete eigenvalues for the direct Zakharov-Shabat problem, based on moving in the complex plane along the argument jumps of the function a(ζ), the localization of which does not require great accuracy. It allows to find all discrete eigenvalues taking into account their multiplicity faster than matrix methods and contour integrals. The method shows significant advantage over other methods when calculating a large discrete spectrum, both in speed and accuracy.

Язык оригиналаанглийский
Номер статьи105718
ЖурналCommunications in Nonlinear Science and Numerical Simulation
СостояниеОпубликовано - мая 2021

Fingerprint Подробные сведения о темах исследования «Introducing phase jump tracking - a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).