Interchannel nonlinearity compensation using a perturbative machine learning technique

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We propose an extension of the perturbation-based approach for fiber nonlinearity compensation that is capable of mitigating both intra- and interchannel nonlinearity with a moderate increase in implementation complexity. Being guided by inverse perturbation theory we develop a straight-forward modification of the conventional model that takes into account nonlinear interactions between symbols from neighboring spectral channels. We employ machine learning techniques such as the normal equation model with regularization for joint identification of perturbation coefficients that are responsible for intra- and interchannel interactions. We investigate the application of the proposed approach for compensating nonlinear signal distortions in a 1200 km fiber-optic 3 x 400 Gbit/s WDM DP-64QAM transmission link. It was shown up to 0.83 dB and 0.51 dB Q2-factor improvement compared to chromatic dispersion equalization and one step per span two samples per symbol digital back-propagation technique, respectively. We estimate the implementation complexity of the approach.

Язык оригиналаанглийский
Номер статьи127026
ЖурналOptics Communications
Том493
DOI
СостояниеОпубликовано - 15 авг 2021

Предметные области OECD FOS+WOS

  • 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ
  • 1.04 ХИМИЧЕСКИЕ НАУКИ
  • 2.02 ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОННАЯ ТЕХНИКА, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
  • 2.05 ТЕХНОЛОГИЯ МАТЕРИАЛОВ

Fingerprint

Подробные сведения о темах исследования «Interchannel nonlinearity compensation using a perturbative machine learning technique». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать