Аннотация
We prove that the spectrum of a Cayley graph over a finite group with a normal generating set S containing with every its element s all generators of the cyclic group is integral. In particular, a Cayley graph of a 2-group generated by a normal set of involutions is integral. We prove that a Cayley graph over the symmetric group of degree n no less than 2 generated by all transpositions is integral. We find the spectrum of a Cayley graph over the alternating group of degree n no less than 4 with a generating set of 3-cycles of the form (k i j) with fixed k, as {-n+1, 1-n+1, 22 -n+1, ..., (n-1)2 -n+1}.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 131-136 |
Число страниц | 6 |
Журнал | Algebra Colloquium |
Том | 27 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 мар 2020 |