Increasing the efficiency of electric submersible pumps by using big data processing and machine learning technologies

S. Abdurakipov

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

Аннотация

The current coverage of oil wells with telemetry does not allow timely determination of deviations in the operation of about 40% of electric submersible pumps. To solve this problem, a model of virtual sensors has been developed that allows the prediction of temperature and pressure growth at the pump intake in the absence of submersible sensors based on modern big data processing and machine learning technologies. The developed models of virtual sensors are embedded directly into the process control system, which allows notifying the technologists and operators about a possible reduction in the planned average pump operating time and their possible failures for various reasons.

Язык оригиналаанглийский
Номер статьи012109
ЖурналJournal of Physics: Conference Series
Том2119
Номер выпуска1
DOI
СостояниеОпубликовано - 15 дек 2021
Событие37th Siberian Thermophysical Seminar, STS 2021 - Novosibirsk, Российская Федерация
Продолжительность: 14 сен 202116 сен 2021

Предметные области OECD FOS+WOS

  • 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ

Fingerprint

Подробные сведения о темах исследования «Increasing the efficiency of electric submersible pumps by using big data processing and machine learning technologies». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать