In search of periodic solutions for a reduction of the Benney chain

Misha Bialy, Andrey E. Mironov

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

We search for smooth periodic solutions for the system of quasi-linear equations known as the Lax dispersionless reduction of the Benney moments chain. It is naturally related to the existence of a polynomial in momenta integral for a classical Hamiltonian system with 1,5 degrees of freedom. For the solution in question, it is not known a priori if the system is elliptic or hyperbolic or of mixed type. We consider two possible regimes for the solution. The first is the case of only one real eigenvalue, where we can completely classify the solutions. The second case of strict hyperbolicity is really a challenge. We find a remarkable 2 × 2 reduction which is strictly hyperbolic with one umbilic point but violates the condition of genuine non-linearity.

Язык оригиналаанглийский
Номер статьи112701
Число страниц9
ЖурналJournal of Mathematical Physics
Том58
Номер выпуска11
DOI
СостояниеОпубликовано - 1 ноя 2017

Fingerprint Подробные сведения о темах исследования «In search of periodic solutions for a reduction of the Benney chain». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать