Аннотация

Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.

Язык оригиналаанглийский
Номер статьиP06005
Число страниц87
ЖурналJournal of Instrumentation
Том15
Номер выпуска6
DOI
СостояниеОпубликовано - 1 июн. 2020

Fingerprint

Подробные сведения о темах исследования «Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать