Аннотация

In this paper, we demonstrate the application of deep neural networks (DNNs) for processing the reflectance spectrum from a fiberoptic temperature sensor composed of densely inscribed fiber Bragg gratings (FBG). Such sensors are commonly avoided in practice since close arrangement of short FBGs results in distortion of the spectrum caused by mutual interference between gratings. In our work the temperature sensor contained 50 FBGs with the length of 0.95 mm, edge-to-edge distance of 0.05 mm and arranged in the 1500–1600 nm spectral range. Instead of solving the direct peak detection problem for distorted signal, we applied DNNs to predict temperature distribution from entire reflectance spectrum registered by the sensor. We propose an experimental calibration setup where the dense FBG sensor is located close to an array of sparse FBG sensors. The goal of DNNs is to predict the positions of the reflectance peaks of the reference sparse FBG sensors from the reflectance spectrum of the dense FBG sensor. We show that a convolution neural network is able to predict the positions of FBG reflectance peaks of sparse sensors with mean absolute error of 7.8 pm that is slightly higher than the hardware reused interrogator equal to 5 pm. We believe that dense FBG sensors assisted with DNNs have a high potential to increase spatial resolution and also extend the length of a fiber optical sensors.

Язык оригиналаанглийский
Номер статьи6188
ЖурналSensors
Том21
Номер выпуска18
DOI
СостояниеОпубликовано - сен 2021

Предметные области OECD FOS+WOS

  • 2.02 ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОННАЯ ТЕХНИКА, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
  • 1.04 ХИМИЧЕСКИЕ НАУКИ
  • 2.04.II ИНЖЕНЕРИЯ, ХИМИЧЕСКАЯ
  • 2.11.OA ИНСТРУМЕНТЫ И ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ.

Fingerprint

Подробные сведения о темах исследования «Highly dense fbg temperature sensor assisted with deep learning algorithms». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать