High-order numerical method for scattering data of the Korteweg - De Vries equation

A. Gudko, A. Gelash, R. Mullyadzhanov

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

Аннотация

Nonlinear wavefields governed by integrable models such as the Korteweg-De Vries (KdV) equation can be decomposed into the so-called scattering data playing the role of independent elementary harmonics evolving trivially in time. A typical scattering data portrait of a spatially localised wavefield represents nonlinear coherent wave structures (solitons) and incoherent radiation. In this work we present a fourth-order accurate algorithm to compute the scattering data within the KdV model. The method based on the Magnus expansion technique provides accurate information about soliton amplitudes, velocities and intensity of the radiation. Our tests performed using a box-shaped wavefield confirm that all components of the scattering data are computed correctly, while the test based on a single-soliton solution verifies the declared order of a numerical scheme.

Язык оригиналаанглийский
Номер статьи012011
ЖурналJournal of Physics: Conference Series
Том1677
Номер выпуска1
DOI
СостояниеОпубликовано - 3 дек 2020
Событие36th Siberian Thermophysical Seminar, STS 2020 - Novosibirsk, Российская Федерация
Продолжительность: 5 окт 20207 окт 2020

Fingerprint Подробные сведения о темах исследования «High-order numerical method for scattering data of the Korteweg - De Vries equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать