Global solvability of the initial-boundary value problem for Navier-Stokes-Fourier type equations describing flows of viscous compressible heat-conducting multifluids

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференции

Аннотация

We consider the initial-boundary value problem governing unsteady motions of viscous compressible heat-conducting multifluids in a bounded three-dimensional domain. The operator of the material derivative is assumed to be common for all components and defined by the average velocity of the multifluid, but in the remaining terms, the individual velocities are kept. Pressure is considered common and dependent on total density and temperature. The existence of weak solutions of the initial-boundary value problem is proved without simplifying assumptions about the structure of viscosity matrices, except the standard physical requirements of positive definiteness.

Язык оригиналаанглийский
Номер статьи012061
Число страниц7
ЖурналJournal of Physics: Conference Series
Том1268
Номер выпуска1
DOI
СостояниеОпубликовано - 16 июл 2019
СобытиеAll-Russian Conference and School for Young Scientists, devoted to 100th Anniversary of Academician L.V. Ovsiannikov on Mathematical Problems of Continuum Mechanics, MPCM 2019 - Novosibirsk, Российская Федерация
Продолжительность: 13 мая 201917 мая 2019

Fingerprint Подробные сведения о темах исследования «Global solvability of the initial-boundary value problem for Navier-Stokes-Fourier type equations describing flows of viscous compressible heat-conducting multifluids». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать