The problem of identification of coefficients and initial conditions for a boundary value problem for parabolic equations that reduces to a minimization problem of a misfit function is investigated. Firstly, the tensor train decomposition approach is presented as a global convergence algorithm. The idea of the proposed method is to extract the tensor structure of the optimized functional and use it for multidimensional optimization problems. Secondly, for the refinement of the unknown parameters, three local optimization approaches are implemented and compared: Nelder-Mead simplex method, gradient method of minimum errors, adaptive gradient method. For gradient methods, the evident formula for the continuous gradient of the misfit function is obtained. The identification problem for the diffusive logistic mathematical model which can be applied to social sciences (online social networks), economy (spatial Solow model) and epidemiology (coronavirus COVID-19, HIV, etc.) is considered. The numerical results for information propagation in online social network are presented and discussed.

Язык оригиналаанглийский
Страницы (с-по)899-913
Число страниц15
ЖурналJournal of Inverse and Ill-Posed Problems
Номер выпуска6
Ранняя дата в режиме онлайн4 сент. 2020
СостояниеОпубликовано - 1 дек. 2020


Подробные сведения о темах исследования «Global and local optimization in identification of parabolic systems». Вместе они формируют уникальный семантический отпечаток (fingerprint).