Geometry of the pore space and dynamic pore and cracked media deforming

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование


In this paper presents the elements of blocked media deforming theory. It means that these media have a specific surface and (related with it) average distance from one crack (pore) to another one. This way requires the creation a new model of continuum, which is contains the integral geometry of pore space. The equations of motion and equilibrium are equations of the infinite order due to infinite numbers of freedom degrees. Along the usual seismic waves, these equations describe very slow waves, not bounded below and, besides of it, they predict the instable solutions, due to parametric resonances in structures bodies. The number of instable solutions corresponds to seismological Gutenberg-Richter law. The dispersion of an average size of structure produces both the fast catastrophes (small dispersion) and slow catastrophes (high dispersion).

Язык оригиналаанглийский
Номер статьи012075
ЖурналJournal of Physics: Conference Series
Номер выпуска1
СостояниеОпубликовано - 21 дек 2018
Событие7th International Conference on Mathematical Modeling in Physical Sciences, IC-MSQUARE 2018 - Moscow, Российская Федерация
Продолжительность: 27 авг 201831 авг 2018


Подробные сведения о темах исследования «Geometry of the pore space and dynamic pore and cracked media deforming». Вместе они формируют уникальный семантический отпечаток (fingerprint).