Аннотация
We study the generalized rigid groups (r-groups), in the metabelian case in more detail. The periodic r-groups are described. We prove that each divisible metabelian r-group decomposes as a semidirect product of two abelian subgroups, each metabelian r-group independently embeds into a divisible metabelian r-group, and the intersection of each collection of divisible subgroups of a metabelian r-group is divisible too.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 148-152 |
Число страниц | 5 |
Журнал | Siberian Mathematical Journal |
Том | 60 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 янв 2019 |