Generalized Hyperarithmetical Computability Over Structures

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

2 Цитирования (Scopus)


We consider the class of approximation spaces generated by admissible sets, in particular by hereditarily finite superstructures over structures. Generalized computability on approximation spaces is conceived of as effective definability in dynamic logic. By analogy with the notion of a structure Σ-definable in an admissible set, we introduce the notion of a structure effectively definable on an approximation space. In much the same way as the Σ-reducibility relation, we can naturally define a reducibility relation on structures generating appropriate semilattices of degrees of structures (of arbitrary cardinality), as well as a jump operation. It is stated that there is a natural embedding of the semilattice of hyperdegrees of sets of natural numbers in the semilattices mentioned, which preserves the hyperjump operation. A syntactic description of structures having hyperdegree is given.

Язык оригиналаанглийский
Страницы (с-по)507-526
Число страниц20
ЖурналAlgebra and Logic
Номер выпуска6
СостояниеОпубликовано - 1 янв. 2017


Подробные сведения о темах исследования «Generalized Hyperarithmetical Computability Over Structures». Вместе они формируют уникальный семантический отпечаток (fingerprint).