General constructions of biquandles and their symmetries

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Biquandles are algebraic objects with two binary operations whose axioms encode the generalized Reidemeister moves for virtual knots and links. These objects also provide set theoretic solutions of the well-known Yang-Baxter equation. The first half of this paper proposes some natural constructions of biquandles from groups and from their simpler counterparts, namely, quandles. We completely determine all words in the free group on two generators that give rise to (bi)quandle structures on all groups. We give some novel constructions of biquandles on unions and products of quandles, including what we refer as the holomorph biquandle of a quandle. These constructions give a wealth of solutions of the Yang-Baxter equation. We also show that for nice quandle coverings a biquandle structure on the base can be lifted to a biquandle structure on the covering. In the second half of the paper, we determine automorphism groups of these biquandles in terms of associated quandles showing elegant relationships between the symmetries of the underlying structures.

Язык оригиналаанглийский
Номер статьи106936
ЖурналJournal of Pure and Applied Algebra
Ранняя дата в режиме онлайн21 окт 2021
DOI
СостояниеЭлектронная публикация перед печатью - 21 окт 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «General constructions of biquandles and their symmetries». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать