Аннотация
In this article we propose the numerical solution of the one dimensional inverse coefficient problem for seismic equation. We use a dynamical version of Gelfand-Levitan-Krein approach for reducing a nonlinear inverse problem for recovering the shear wave's velocity and the density of the medium to two sequences of the linear integral equations. We propose numerical algorithm for solving these equations based on a fast inversion of a Toeplitz matrix. The proposed numerical methods base on the structure of the problem and therefore improve the efficiency of the algorithms, compared with standard approaches. We present numerical results for solving considered integral equations.
Язык оригинала | английский |
---|---|
Номер статьи | 012022 |
Журнал | Journal of Physics: Conference Series |
Том | 2092 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 20 дек. 2021 |
Событие | 11th International Scientific Conference and Young Scientist School on Theory and Computational Methods for Inverse and Ill-posed Problems - Novosibirsk, Российская Федерация Продолжительность: 26 авг. 2019 → 4 сент. 2019 |
Предметные области OECD FOS+WOS
- 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ