In this paper we present the first attempt of adaptation the Random Forest (RF) machine learning algorithm to gamma/hadron separation in the TAIGA experiment (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy). The TAIGA experiment will include HiSCORE array with 120 wide-angle Cherenkov detectors on the area of 1 km2 and 5 Imaging Atmospheric Cherenkov Telescopes (IACT) on the same area. At the first stage of the analysis, only images obtained by one IACT were included in consideration. The training process occurs on samples of parameterized images obtained from Monte Carlo (MC) data for gammas and hadrons with a ‘Scaled Hillas Parameters’ standard technique. It was shown that the program effectively separates gamma-like showers, RF method does produce stable results and is robust with respect to input parameters and provides a simple control and setup of the procedure for extracting showers from gamma rays.

Язык оригиналаанглийский
Номер статьи008
ЖурналProceedings of Science
СостояниеОпубликовано - 12 янв. 2022
Событие5th International Workshop on Deep Learning in Computational Physics, DLCP 2021 - Moscow, Российская Федерация
Продолжительность: 28 июн. 202129 июн. 2021

Предметные области OECD FOS+WOS



Подробные сведения о темах исследования «Gamma/Hadron Separation for a Ground Based IACT in Experiment TAIGA Using Random Forest Machine Learning Methods». Вместе они формируют уникальный семантический отпечаток (fingerprint).