Fully homomorphic encryption for parallel implementation of approximate methods for solving differential equations

Artem K. Vishnevsky, Sergey F. Krendelev

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

A parallel fully homomorphic encryption for rational numbers is developed in this paper. Parallelism of processing is achieved by using methods of modular arithmetic. Encryption is constructed by mapping the field of rational numbers onto a vector space. Two operations, namely addition and multiplication, are defined. Addition and multiplication tables are constructed, which ensures that a vector space is closed under these mathematical operations. We show the implementation of protected recursive computations in rings of the form ZM, M = m1m2…mk. We give a criterion of effective use of encryption for the numerical solution of the Cauchy problem. It is proved that the efficiency of encryption increases with increasing volumes and accuracy of computations.

Язык оригиналаанглийский
Название основной публикацииParallel Computational Technologies - 12th International Conference, PCT 2018, Revised Selected Papers
РедакторыL Sokolinsky, M Zymbler
ИздательSpringer-Verlag GmbH and Co. KG
Страницы119-134
Число страниц16
ISBN (печатное издание)9783319996721
DOI
СостояниеОпубликовано - 1 янв 2018
Событие12th International Scientific Conference on Parallel Computational Technologies, PCT 2018 - Rostov-on-Don, Российская Федерация
Продолжительность: 2 апр 20186 апр 2018

Серия публикаций

НазваниеCommunications in Computer and Information Science
Том910
ISSN (печатное издание)1865-0929

Конференция

Конференция12th International Scientific Conference on Parallel Computational Technologies, PCT 2018
СтранаРоссийская Федерация
ГородRostov-on-Don
Период02.04.201806.04.2018

Fingerprint Подробные сведения о темах исследования «Fully homomorphic encryption for parallel implementation of approximate methods for solving differential equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать