Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures

Irina V. Antonova, Irina I. Kurkina, Anton K. Gutakovskii, Igor A. Kotin, Artem I. Ivanov, Nadezhda A. Nebogatikova, Regina A. Soots, Svetlana A. Smagulova

Результат исследования: Научные публикации в периодических изданияхстатья

9 Цитирования (Scopus)

Аннотация

Fluorinated graphene (FG), the most stable derivative of graphene, is suggested for the role of functional material (weak fluorination degree) and the dielectric layers for graphene and other 2D materials, especially for flexible and printed electronics. The main findings discussed in the present study are (1) an excellent mechanical properties of FG in bending conditions for the first time measured for FG with different fluorination degree; (2) the 97-99% transparency of FG films with thickness up to 25 nm in wide range of wave lengths, (3) a ultra low leakage current and a high breakdown field in the printed cross-bar structures; (4) a smooth increase in interplanar spacing by 1-2% from the center of few-layered fluorinated graphene flakes to their edges; (5) observation of only C-C related G line without defect related D line in Raman spectra in the case of giant amplification of Raman scattering for FG films printed at Ag layers. Unchanged characteristics of fluorinated graphene films up to stretching-strain values of 2.5-4% were demonstrated. Generally, it can be stated that fluorinated graphene films have great promise in flexible and printed electronics. (C) 2018 Published by Elsevier Ltd.

Язык оригиналаанглийский
Номер статьи107526
Число страниц11
ЖурналMaterials and Design
Том164
DOI
СостояниеОпубликовано - 15 фев 2019

Fingerprint Подробные сведения о темах исследования «Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать