Аннотация
Let π be a finite set of primes. We prove that each soluble group of finite rank contains a finite index subgroup whose every finite homomorphic π-image is nilpotent. A similar assertion is proved for a finitely generated group of finite rank. These statements are obtained as a consequence of the following result of the article: Each soluble pro-π-group of finite rank has an open normal pronilpotent subgroup.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 373-376 |
Число страниц | 4 |
Журнал | Siberian Mathematical Journal |
Том | 60 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 мая 2019 |