Аннотация
We study finite nonsoluble generalized Frobenius groups; i.e., the groups G with a proper nontrivial normal subgroup F such that each coset Fx of prime order p, as an element of the quotient group G/F, consists only of p-elements. The particular example of such a group is a Frobenius group, given that F is the Frobenius kernel of G, and also the Camina group.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 805-809 |
Число страниц | 5 |
Журнал | Siberian Mathematical Journal |
Том | 60 |
Номер выпуска | 5 |
DOI | |
Состояние | Опубликовано - 1 сен 2019 |