Finite difference methods for 2D shallow water equations with dispersion

Gayaz S. Khakimzyanov, Zinaida I. Fedotova, Oleg I. Gusev, Nina Yu Shokina

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

2 Цитирования (Scopus)


Basic properties of some finite difference schemes for two-dimensional nonlinear dispersive equations for hydrodynamics of surface waves are considered. It is shown that stability conditions for difference schemes of shallow water equations are qualitatively different in the cases the dispersion is taken into account, or not. The difference in the behavior of phase errors in one- and two-dimensional cases is pointed out. Special attention is paid to the numerical algorithm based on the splitting of the original system of equations into a nonlinear hyperbolic system and a scalar linear equation of elliptic type.

Язык оригиналаанглийский
Страницы (с-по)105-117
Число страниц13
ЖурналRussian Journal of Numerical Analysis and Mathematical Modelling
Номер выпуска2
СостояниеОпубликовано - 1 апр 2019


Подробные сведения о темах исследования «Finite difference methods for 2D shallow water equations with dispersion». Вместе они формируют уникальный семантический отпечаток (fingerprint).