Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method

A. M. Blokhin, B. V. Semisalov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.

Язык оригиналаанглийский
Страницы (с-по)302-315
Число страниц14
ЖурналComputational Mathematics and Mathematical Physics
Том62
Номер выпуска2
DOI
СостояниеОпубликовано - февр. 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА
  • 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ

Fingerprint

Подробные сведения о темах исследования «Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать