Finding secluded places of special interest in graphs

René Van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter, Manuel Sorge, Ondřej Suchý

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

2 Цитирования (Scopus)

Аннотация

Finding a vertex subset in a graph that satisfies a certain property is one of the most-studied topics in algorithmic graph theory. The focus herein is often on minimizing or maximizing the size of the solution, that is, the size of the desired vertex set. In several applications, however, we also want to limit the "exposure" of the solution to the rest of the graph. This is the case, for example, when the solution represents persons that ought to deal with sensitive information or a segregated community. In this work, we thus explore the (parameterized) complexity of finding such secluded vertex subsets for a wide variety of properties that they shall fulfill. More precisely, we study the constraint that the (open or closed) neighborhood of the solution shall be bounded by a parameter and the influence of this constraint on the complexity of minimizing separators, feedback vertex sets, -free vertex deletion sets, dominating sets, and the maximization of independent sets.

Язык оригиналаанглийский
Название основной публикации11th International Symposium on Parameterized and Exact Computation, IPEC 2016
ИздательSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Том63
ISBN (электронное издание)9783959770231
DOI
СостояниеОпубликовано - 1 фев 2017
Событие11th International Symposium on Parameterized and Exact Computation, IPEC 2016 - Aarhus, Дания
Продолжительность: 24 авг 201626 авг 2016

Конференция

Конференция11th International Symposium on Parameterized and Exact Computation, IPEC 2016
СтранаДания
ГородAarhus
Период24.08.201626.08.2016

Fingerprint Подробные сведения о темах исследования «Finding secluded places of special interest in graphs». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Van Bevern, R., Fluschnik, T., Mertzios, G. B., Molter, H., Sorge, M., & Suchý, O. (2017). Finding secluded places of special interest in graphs. В 11th International Symposium on Parameterized and Exact Computation, IPEC 2016 (Том 63). [5] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.IPEC.2016.5