Fejér Sums for Periodic Measures and the von Neumann Ergodic Theorem

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

3 Цитирования (Scopus)

Аннотация

The Fejér sums of periodic measures and the norms of the deviations from the limit in the von Neumann ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejér kernels), so this ergodic theorem is, in fact, a statement about the asymptotics of the growth of the Fejér sums at zero for the spectral measure of the corresponding dynamical system. As a result, well-known estimates for the rates of convergence in the von Neumann ergodic theorem can be restated as estimates of the Fejér sums at the point for periodic measures. For example, natural criteria for the polynomial growth and polynomial decrease in these sums can be obtained. On the contrary, available in the literature, numerous estimates for the deviations of Fejér sums at a point can be used to obtain new estimates for the rate of convergence in this ergodic theorem.

Язык оригиналаанглийский
Страницы (с-по)344-347
Число страниц4
ЖурналDoklady Mathematics
Том98
Номер выпуска1
DOI
СостояниеОпубликовано - 1 июл. 2018

Fingerprint

Подробные сведения о темах исследования «Fejér Sums for Periodic Measures and the von Neumann Ergodic Theorem». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать