Factorization of Boolean Polynomials: Parallel Algorithms and Experimental Evaluation

P. G. Emelyanov, M. Krishna, V. Kulkarni, S. K. Nandy, D. K. Ponomaryov, S. Raha

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Polynomial factorization is a classical algorithmic algebra problem with a wide range of applications. Of particular interest is factorization over finite fields, among which fields of order two are probably the most important ones when representing Boolean functions by Zhegalkin polynomials. In particular, factorization of Boolean polynomials corresponds to conjunctive decomposition of Boolean functions given in algebraic normal form. In addition, factorization enables decomposition of functions given in full disjunctive normal form (DNF) and positive DNF, as well as Cartesian decomposition of relational data. These applications demonstrate the importance of developing fast factorization algorithms. In this paper, we consider some recently proposed factorization algorithms of polynomial complexity and describe a parallel MIMD implementation that takes advantage of both task-level and data-level parallelism. We conduct some experiments on logic synthesis benchmarks and synthetic (random) polynomials to demonstrate significant factorization speedup. In conclusion, we discuss results of testing a parallel implementation of the algorithm on a massively parallel multicore architecture (REDEFINE).

Язык оригиналаанглийский
Страницы (с-по)108-118
Число страниц11
ЖурналProgramming and Computer Software
Том47
Номер выпуска2
DOI
СостояниеОпубликовано - мар 2021

Предметные области OECD FOS+WOS

  • 1.02 КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ
  • 1.02.EW ИНФОРМАТИКА, ПРОГРАММНАЯ ИНЖЕНЕРИЯ

Fingerprint Подробные сведения о темах исследования «Factorization of Boolean Polynomials: Parallel Algorithms and Experimental Evaluation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать