Factoring nonabelian finite groups into two subsets

R. R. Bildanov, V. A. Goryachenko, A. V. Vasil'ev

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

A group G is said to be factorized into subsets A1, A2,..., As ⊆ G if every element g in G can be uniquely represented as g = g1g2... gs, where gi ∈ Ai, i = 1, 2,..., s. We consider the following conjecture: for every finite group G and every factorization n = ab of its order, there is a factorization G = AB with |A| = a and |B| = b. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than 10 000.

Язык оригиналаанглийский
Страницы (с-по)683-689
Число страниц7
ЖурналСибирские электронные математические известия
Том17
DOI
СостояниеОпубликовано - 1 мая 2020

Fingerprint

Подробные сведения о темах исследования «Factoring nonabelian finite groups into two subsets». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать