Аннотация
A group G is said to be factorized into subsets A1, A2,..., As ⊆ G if every element g in G can be uniquely represented as g = g1g2... gs, where gi ∈ Ai, i = 1, 2,..., s. We consider the following conjecture: for every finite group G and every factorization n = ab of its order, there is a factorization G = AB with |A| = a and |B| = b. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than 10 000.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 683-689 |
Число страниц | 7 |
Журнал | Сибирские электронные математические известия |
Том | 17 |
DOI | |
Состояние | Опубликовано - 1 мая 2020 |