Extension of the Günter Derivatives to the Lipschitz Domains and Application to the Boundary Potentials of Elastic Waves

A. Bendali, S. Tordeux, Yu M. Volchkov

    Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

    Аннотация

    Regularization techniques for the trace and the traction of elastic waves potentials previously built for domains of the class C2 are extended to the Lipschitz case. In particular, this yields an elementary way to establish the mapping properties of elastic wave potentials from those of the scalar Helmholtz equation without resorting to the more advanced theory for elliptic systems in the Lipschitz domains. Scalar Günter derivatives of a function defined on the boundary of a three-dimensional domain are expressed as components (or their opposites) of the tangential vector rotational ∇∂Ωu × n of this function in the canonical orthonormal basis of the ambient space. This, in particular, implies that these derivatives define bounded operators from Hs to Hs−1 (0 ≤ s ≤ 1) on the boundary of the Lipschitz domain and can easily be implemented in boundary element codes. Representations of the Guünter operator and potentials of single and double layers of elastic waves in the two-dimensional case are provided.

    Язык оригиналаанглийский
    Страницы (с-по)139-156
    Число страниц18
    ЖурналJournal of Applied Mechanics and Technical Physics
    Том61
    Номер выпуска1
    DOI
    СостояниеОпубликовано - 1 янв 2020

    Fingerprint

    Подробные сведения о темах исследования «Extension of the Günter Derivatives to the Lipschitz Domains and Application to the Boundary Potentials of Elastic Waves». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать