Experimental Study of the Convective Motions by the PIV Technique within an Evaporating Liquid Layer into the Gas Flow

Yuriy Lyulin, Aleksei Kreta, Henni Ouerdane, Oleg Kabov

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

We present the experimental study of convection in a horizontal liquid layer (ethanol, 3-mm deep), evaporating from a localized surface (10 × 10 mm2) into the gas flow (air). Visualization and measurements of the two-component velocity field in the liquid layer has been carried out with the Particle Image Velocimetry (PIV) technique. In our experiments we consider a novel configuration in which the gas-liquid interface is maintained in the flat position in the confined square area and the volatile liquid evaporates from the planar surface into the gas flowing along the surface. We also consider the effect of the gas velocity (0.0138–0.138 m/s) and the gas and the liquid temperature (20 °C - 50 °C) on the convective flow structure within the liquid layer. It is shown that the gas velocity and both, the gas and the liquid temperatures induce significant changes in the convective flow structure. We give the first experimental proof of the phenomenon that the motion of the gas-liquid interface goes along the counter-current direction to the gas flow as theoretically predicted. The analysis of the experimental data shows that the influence of the gas flow velocity on the Marangoni convection at the maximum temperature (50 °C) is significantly reduced owing to the growth of the diffusion resistance for the gas flow under a strong evaporation from the interface. As a result, it leads to the low surface temperature gradient, which decreases thermocapillary stresses and the circulation velocity of the first (thermocapillary) vortex within the fluid layer. Further, we observe that the disappearance of the second convective vortex circulating in the same direction with the gas flow. The governing factor, determining the structure of convective flows within the liquid is the thermocapillary effect due to the intensive evaporation provided that the cooling and the temperature distribution are uniform on the gas-liquid interface.

Язык оригиналаанглийский
Страницы (с-по)203-216
Число страниц14
ЖурналMicrogravity Science and Technology
Том32
Номер выпуска2
DOI
СостояниеОпубликовано - 1 апр 2020

    Fingerprint

Цитировать