Аннотация
The Cauchy–Dirichlet and the Cauchy problem for the degenerate and singular quasilinear anisotropic parabolic equations are considered. We show that the time derivative ut of a solution u belongs to L∞ under a suitable assumption on the smoothness of the initial data. Moreover, if the domain satisfies some additional geometric restrictions, then the spatial derivatives uxi belong to L∞ as well. In the singular case we show that the second derivatives uxixj of a solution of the Cauchy problem belong to L2.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 3965-3986 |
Число страниц | 22 |
Журнал | Journal of Functional Analysis |
Том | 272 |
Номер выпуска | 10 |
DOI | |
Состояние | Опубликовано - 15 мая 2017 |