Existence of entropy measure-valued solutions for forward-backward p-parabolic equations

Stanislav N. Antontsev, Ivan V. Kuznetsov

Результат исследования: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)


In this paper we have proved that the Dirichlet problem for the forward-backward p-parabolic equation has an entropy measurevalued solution which has been obtained as a singular limit of weak solutions and their gradients to the Dirichlet problem for the elliptic equation containing the anisotropic (p, 2)-Laplace operator. In order to guarantee the existence of entropy measure-valued solutions, the initial and final conditions should be formulated in the form of integral inequalities. This means that an entropy measure-valued solution can deviate from both initial and final data on the boundary. Moreover, a gradient Young measure appears in the representation of an entropy measurevalued solution. The uniqueness of entropy measure-valued solutions is still an open question.

Язык оригиналаанглийский
Страницы (с-по)774-793
Число страниц20
ЖурналSiberian Electronic Mathematical Reports
СостояниеОпубликовано - 1 янв 2017

Fingerprint Подробные сведения о темах исследования «Existence of entropy measure-valued solutions for forward-backward p-parabolic equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать