Exact pseudopolynomial algorithms for a balanced 2-clustering problem

A. V. Kel’manov, A. V. Motkova

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

16 Цитирования (Scopus)


We consider the strongly NP-hard problem of partitioning a set of Euclidean points into two clusters so as to minimize the sum (over both clusters) of the weighted sum of the squared intracluster distances from the elements of the clusters to their centers. The weights of sums are the sizes of the clusters. The center of one cluster is given as input, while the center of the other cluster is unknown and determined as the average value over all points in the cluster (as the geometric center). Two variants of the problems are analyzed in which the cluster sizes are either given or unknown. We present and prove some exact pseudopolynomial algorithms in the case of integer components of the input points and fixed space dimension.

Язык оригиналаанглийский
Страницы (с-по)349-355
Число страниц7
ЖурналJournal of Applied and Industrial Mathematics
Номер выпуска3
СостояниеОпубликовано - 1 июл. 2016


Подробные сведения о темах исследования «Exact pseudopolynomial algorithms for a balanced 2-clustering problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).