Exact pseudopolynomial algorithm for one sequence partitioning problem

A. V. Kel’manov, S. A. Khamidullin, V. I. Khandeev

Результат исследования: Научные публикации в периодических изданияхстатья

7 Цитирования (Scopus)

Аннотация

We consider a strongly NP-hard problem of partitioning a finite sequence of vectors in a Euclidean space into two clusters of given size with the criterion of minimizing the total sum of square distances from cluster elements to their centers. The center of the first cluster is subject to optimization, defined by the mean value of all vectors in this cluster. The center of the second cluster is fixed at the origin. The partition is subject to the following condition: the difference between indices of two subsequent vectors included in the first cluster is bounded from above and below by given constants. We propose an exact pseudopolynomial algorithm for the case of a problem where the dimension of the space is fixed, and components of input vectors are integer-valued.

Язык оригиналаанглийский
Страницы (с-по)67-74
Число страниц8
ЖурналAutomation and Remote Control
Том78
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв 2017

Fingerprint Подробные сведения о темах исследования «Exact pseudopolynomial algorithm for one sequence partitioning problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать