Аннотация
We investigate the application of dynamic deep neural networks for nonlinear equalization in long haul transmission systems. Through extensive numerical analysis we identify their optimum dimensions and calculate their computational complexity as a function of system length. Performing comparison with traditional back-propagation based nonlinear compensation of 2 steps-per-span and 2 samples-per-symbol, we demonstrate equivalent mitigation performance at significantly lower computational cost.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 32765-32776 |
Число страниц | 12 |
Журнал | Optics Express |
Том | 26 |
Номер выпуска | 25 |
DOI | |
Состояние | Опубликовано - 10 дек. 2018 |